
Andy Pavlo
PGConf NYC
October 2023

https://cmudb.io/pgconf23

https://db.cs.cmu.edu/
https://ottertune.com/
https://cs.cmu.edu/~pavlo
https://cs.cmu.edu/~pavlo

DATABASES

A database's data model is the underlying structure
and organization of data within the database.

The relational model (RM) + SQL have
dominated the database landscape since the 1980s.

But every 10 years somebody invents a RM/SQL
"killer" that addresses some deficiency…

2

https://db.cs.cmu.edu/

DATABASES

A database's data model is the underlying structure
and organization of data within the database.

The relational model (RM) + SQL have
dominated the database landscape since the 1980s.

But every 10 years somebody invents a RM/SQL
"killer" that addresses some deficiency…

3

https://db.cs.cmu.edu/

DATABASES

A database's data model is the underlying structure
and organization of data within the database.

The relational model (RM) + SQL have
dominated the database landscape since the 1980s.

But every 10 years somebody invents a RM/SQL
"killer" that addresses some deficiency…

4

https://db.cs.cmu.edu/

3

New Startups!
Lots of $$$!

SQL is great!

SQL is bad!
SQL adopts

new features

slow
OLD

AWKWARD
Inconsistent

Not WEBSCALE

https://db.cs.cmu.edu/

4

Hierarchical (1960s)

Network (1960s)

Relational (1970s)

Entity-Relationship (1970s)

Extended Relational (1980s)

Semantic (1980s)

Object-Oriented (1980s)

Object-Relational (1990s)

Semi-Structured/XML (1990s)

https://cmudb.io/wgaca

WHAT GOES AROUND COMES AROUND
READINGS IN DB SYSTEMS, 4TH EDITION (2005)

BCE

https://db.cs.cmu.edu/
https://cmudb.io/wgaca

4

Hierarchical (1960s)

Network (1960s)

Relational (1970s)

Entity-Relationship (1970s)

Extended Relational (1980s)

Semantic (1980s)

Object-Oriented (1980s)

Object-Relational (1990s)

Semi-Structured/XML (1990s)

https://cmudb.io/wgaca

WHAT GOES AROUND COMES AROUND
READINGS IN DB SYSTEMS, 4TH EDITION (2005)

"Before Codd Era"

https://db.cs.cmu.edu/
https://cmudb.io/wgaca

5

Key-Value (1990s)

MapReduce (2000s)

Document/JSON (2000s)

Column-family (2000s)

Graph (2000s)

Text Search (1960s)

Array (1990s)

Vector (2020s)

WHAT GOES AROUND COMES AROUND…
AND AROUND…
UNDER SUBMISSION (2023)

https://db.cs.cmu.edu/

5

Key-Value (1990s)

MapReduce (2000s)

Document/JSON (2000s)

Column-family (2000s)

Graph (2000s)

Text Search (1960s)

Array (1990s)

Vector (2020s)

WHAT GOES AROUND COMES AROUND…
AND AROUND…
UNDER SUBMISSION (2023)

https://db.cs.cmu.edu/

TALK OUTLINE

Key-Value Stores (1990s)

MapReduce Systems (2000s)

Document/JSON Databases (2000s)

Column-family / Wide-Column (2000s)

Graph Databases (2000s)

Text Search Engines (2000s)

Array Databases (1990s)

Vector Databases (2020s)

6

https://db.cs.cmu.edu/

TALK OUTLINE

Key-Value Stores (1990s)

MapReduce Systems (2000s)

Document/JSON Databases (2000s)

Column-family / Wide-Column (2000s)

Graph Databases (2000s)

Text Search Engines (2000s)

Array Databases (1990s)

Vector Databases (2020s)

6

TLDR: RM+ SQL remains
the best approach for
most applications.

https://db.cs.cmu.edu/

KEY-VALUE STORES

Associative array that maps a key to a value.
→ Value is typically an untyped byte array

that the DBMS cannot interpret.

7

(key, value)

Distributed KV Stores:
→ Shared-nothing DBMSs for caching + session data.
→ Provide higher/predictable performance instead of a more

complex query language and features.

Embedded Storage Managers:
→ Low-level API systems that run in the same address space as a

higher-level application.

https://db.cs.cmu.edu/

KEY-VALUE STORES

Some distributed KV stores realized that expressive
APIs are important and evolved into document stores.
→ If value is opaque, applications must implement more complex

logic / types.
→ Better to start with a RM DBMS than to contort a KV DBMS

to use a more complex data model (e.g., Postgres hstore).

Discussion:
→ Embedded KV storage managers make it easier to create full-

featured DBMSs.
→ Very few commercial success stories for KV storage managers.

8

https://db.cs.cmu.edu/
https://www.postgresql.org/docs/current/hstore.html

MAPREDUCE SYSTEMS

Distributed batch-oriented programming and execution
model for analyzing large data sets.

Data model decided by user-written functions.
→ Map: UDF that performs computation + filtering
→ Reduce: Analogous to GROUP BY operation.

9

SELECT map() FROM crawl_table GROUP BY reduce();

MapReduce Frameworks:
→ Internal implementation at Google (2003).
→ Yahoo! created the open-source version Hadoop (2005).

https://db.cs.cmu.edu/

MAPREDUCE SYSTEMS

Distributed batch-oriented programming and execution
model for analyzing large data sets.

Data model decided by user-written functions.
→ Map: UDF that performs computation + filtering
→ Reduce: Analogous to GROUP BY operation.

9

SELECT map() FROM crawl_table GROUP BY reduce();

MapReduce Frameworks:
→ Internal implementation at Google (2003).
→ Yahoo! created the open-source version Hadoop (2005).

https://db.cs.cmu.edu/
https://doi.org/10.1145/1629175.1629198
https://doi.org/10.1145/1629175.1629197

MAPREDUCE SYSTEMS

People remembered that procedural query
languages are (usually) a bad idea.

MR vendors put SQL engines on top of Hadoop.

Hadoop technology/services market crashed.

Google announced they were dropping MR in 2014.

Discussion:
→ Companies kept HDFS but replaced Hadoop compute layer

with relational query engines.
→ Aspects of MR frameworks carried into distributed DBMSs

(disaggregated compute/storage, shuffle phase).
→ Rise of Hadoop alternatives (that eventually added SQL).

10

https://db.cs.cmu.edu/

DOCUMENT DATABASES

Represent a database as a collection of document objects
that contain a hierarchy of field/value pairs.
→ Each document field is identified by a name.
→ A field's value is either a scalar type, array of values, or another

document.
→ Applications do not predefine schema.

11

{<field>: <scalar|[values]|{document}>}

NoSQL Document-oriented Systems:
→ Non-standard / procedural query languages
→ Defined by what they lack instead of what they provide.

https://db.cs.cmu.edu/

DOCUMENT DATABASES

Document model is the same as previous models
with many of the same problems.
→ Object-Oriented (1980s)
→ Semi-Structured / XML (1990s).

Core idea is denormalization ("pre-joining"):
→ Avoid object-relational impedance mismatch between

application code and DBMS data model.
→ Avoid need for joins / multiple queries to retrieve data

related to an object (N+1 SELECT Problem).

12

https://db.cs.cmu.edu/
https://en.wikipedia.org/wiki/Object%E2%80%93relational_impedance_mismatch

DOCUMENT DATABASES

Almost every major NoSQL DBMS relearned
(most) of the lessons from the 1970s:
→ SQL APIs are a good idea.
→ Schemas + integrity constraints are a good idea.
→ Transactions are a good idea.
→ Logical/physical data independence is a good idea.

13

https://db.cs.cmu.edu/

DOCUMENT DATABASES

Almost every major NoSQL DBMS relearned
(most) of the lessons from the 1970s:
→ SQL APIs are a good idea.
→ Schemas + integrity constraints are a good idea.
→ Transactions are a good idea.
→ Logical/physical data independence is a good idea.

13

→ PartiQL

→ CQL

→ AQL

→ SQL++

https://db.cs.cmu.edu/

DOCUMENT DATABASES

Almost every major NoSQL DBMS relearned
(most) of the lessons from the 1970s:
→ SQL APIs are a good idea.
→ Schemas + integrity constraints are a good idea.
→ Transactions are a good idea.
→ Logical/physical data independence is a good idea.

13

→ PartiQL

→ CQL

→ AQL

→ SQL++

https://db.cs.cmu.edu/
https://www.mongodb.com/blog/post/introducing-atlas-sql-interface-connectors-drivers

DOCUMENT DATABASES

Almost every major NoSQL DBMS relearned
(most) of the lessons from the 1970s:
→ SQL APIs are a good idea.
→ Schemas + integrity constraints are a good idea.
→ Transactions are a good idea.
→ Logical/physical data independence is a good idea.

Discussion:
→ SQL:2016 introduced JSON types + operators.
→ The intellectual distance between relational+JSON DBMSs and

document+SQL DBMSs has shrunk.

13

→ PartiQL

→ CQL

→ AQL

→ SQL++

https://db.cs.cmu.edu/

COLUMN-FAMILY / WIDE-COLUMN

Reduction of the document data model that only
supports one level of nesting.
→ A record's value can only be a scalar or an array of scalars.
→ Deficiencies are the same as the document model.

14

{<field>: <scalar|[values]>}

Column-Family Systems:
→ First implementation was Google's BigTable (2004)
→ Copied by several Internet start-ups.

https://db.cs.cmu.edu/

GRAPH DATABASES

Direct multigraph structure that supports key/value
labels for nodes and edges.
→ Property Graph vs. Resource Description Framework (RDF)

15

Property Graph DBMSs:
→ Provide graph-oriented traversal APIs.
→ Inefficient schemaless storage.

Node (id, {key: value}*)
Edge (node_id1, node_id2, {key: value}*)

https://db.cs.cmu.edu/

GRAPH DATABASES

Graph model is the same as the network model from
CODASYL (1970s) with same issues.

Advancements in algorithms and systems will diminish
the perceived advantage of specialized graph DBMSs.
→ Worst-case Optimal Joins
→ Vectorized Query Execution
→ Factorized Query Processing

Discussion:
→ SQL:2023 introduced SQL/PGQ (based on Neo4j's Cypher)

Subset of the emerging GQL standard.
→ Studies show that RM DBMSs outperform graph DBMSs.

16

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023/schedule.html#mar-15-2023
https://en.wikipedia.org/wiki/GQL

GRAPH DATABASES

Graph model is the same as the network model from
CODASYL (1970s) with same issues.

Advancements in algorithms and systems will diminish
the perceived advantage of specialized graph DBMSs.
→ Worst-case Optimal Joins
→ Vectorized Query Execution
→ Factorized Query Processing

Discussion:
→ SQL:2023 introduced SQL/PGQ (based on Neo4j's Cypher)

Subset of the emerging GQL standard.
→ Studies show that RM DBMSs outperform graph DBMSs.

16

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023/schedule.html#mar-15-2023
https://en.wikipedia.org/wiki/GQL
https://www.microsoft.com/en-us/research/project/project-akupara-approximate-nearest-neighbor-search-for-large-scale-semantic-search/

GRAPH DATABASES

Graph model is the same as the network model from
CODASYL (1970s) with same issues.

Advancements in algorithms and systems will diminish
the perceived advantage of specialized graph DBMSs.
→ Worst-case Optimal Joins
→ Vectorized Query Execution
→ Factorized Query Processing

Discussion:
→ SQL:2023 introduced SQL/PGQ (based on Neo4j's Cypher)

Subset of the emerging GQL standard.
→ Studies show that RM DBMSs outperform graph DBMSs.

16

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023/schedule.html#mar-15-2023
https://en.wikipedia.org/wiki/GQL
https://www.microsoft.com/en-us/research/project/project-akupara-approximate-nearest-neighbor-search-for-large-scale-semantic-search/
https://news.ycombinator.com/item?id=29737326

TEXT SEARCH ENGINES

Systems that extract structure (e.g., meta-data, indexes)
from text data and support queries over that content.
→ Tokenize documents into "bag of words" and then build

inverted indexes over those tokens.
→ No data model because text data is inherently unstructured.

Core ideas pioneered by Cornell's SMART (1965).

17

Text Search Engines:
→ Quickly parse, index, and store large documents.
→ Built-in support for noise/salient words + synonyms.

https://db.cs.cmu.edu/
https://en.wikipedia.org/wiki/SMART_Information_Retrieval_System

TEXT SEARCH ENGINES

Leading RM DBMSs include full-text search indexes
but their adoption is stymied by non-model reasons.
→ Non-standard SQL operations / syntax.
→ Text data is large but not high importance. DBMS storage is

always more expensive than generic storage.

Discussion:
→ Maintaining a separate text search DBMS should be

unnecessary but lots of people still do it.
→ All DBMS vendors are augmenting inverted-index text search

with vector-based similarity search…

18

https://db.cs.cmu.edu/

ARRAY DATABASES

Collection of data where each element is identifiable by
one or more dimension offsets.
→ Vectors (1D), Matrices (2D), Tensors (+3D)
→ Dimensions do not have to align with integer grids.

19

(dimension1, dimension2,... [values])

Array DBMSs:
→ Specialized storage managers and execution engines.
→ Sparse vs. Dense Arrays

https://db.cs.cmu.edu/

https://db.cs.cmu.edu/

ARRAY DATABASES

Supporting arrays as first-class data types violates the
original RM vision. But this is a good example of RM
evolving to meet the needs of applications.

Discussion:
→ SQL:2023 added multi-dimensional arrays (SQL/MDA).
→ Array data access patterns do not follow row-oriented or

columnar patterns. Likely requires new execution engine.

21

https://db.cs.cmu.edu/

VECTOR DATABASES

Document DBMSs with specialized indexes for
(approximate) similarity search on 1D arrays.
→ Vectors represent embedding of corresponding object.

22

{vector: [values],
 metadata: {key: value}*}

Vector DBMSs:
→ Accelerate approximate nearest neighbor search via indexes.
→ Not meant to be primary / database-of-record storage.

https://db.cs.cmu.edu/

VECTOR DATABASES

23

id name year lyrics

Id1 Enter the Wu-Tang 1993 <text>

Id2 Run the Jewels 2 2015 <text>

Id3 Liquid Swords 1995 <text>

Id4 We Got It from Here 2016 <text>

Embeddings
Id1 → [0.32, 0.78, 0.30, ...]

Id2 → [0.99, 0.19, 0.81, ...]

Id3 → [0.01, 0.18, 0.85, ...]

Id4 → [0.19, 0.82, 0.24, ...]

⋮

Vector
Index

HNSW, IVFFlat
Meta Faiss, Spotify Annoy,

Microsoft DiskANN

Transformer

https://db.cs.cmu.edu/
https://www.youtube.com/watch?v=pJk0p-98Xzc
https://en.wikipedia.org/wiki/Run_the_Jewels_2
https://youtu.be/5qDhaWqeNMc
https://en.wikipedia.org/wiki/We_Got_It_from_Here..._Thank_You_4_Your_Service
https://arxiv.org/abs/1603.09320
https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://github.com/spotify/annoy
https://www.microsoft.com/en-us/research/project/project-akupara-approximate-nearest-neighbor-search-for-large-scale-semantic-search/

VECTOR DATABASES

23

id name year lyrics

Id1 Enter the Wu-Tang 1993 <text>

Id2 Run the Jewels 2 2015 <text>

Id3 Liquid Swords 1995 <text>

Id4 We Got It from Here 2016 <text>

Embeddings
Id1 → [0.32, 0.78, 0.30, ...]

Id2 → [0.99, 0.19, 0.81, ...]

Id3 → [0.01, 0.18, 0.85, ...]

Id4 → [0.19, 0.82, 0.24, ...]

⋮

Vector
Index

HNSW, IVFFlat
Meta Faiss, Spotify Annoy,

Microsoft DiskANN

[0.02, 0.10, 0.24, ...]

Transformer

Ranked List of Ids
Find albums with lyrics about

running from the police

Query

https://db.cs.cmu.edu/
https://www.youtube.com/watch?v=pJk0p-98Xzc
https://en.wikipedia.org/wiki/Run_the_Jewels_2
https://youtu.be/5qDhaWqeNMc
https://en.wikipedia.org/wiki/We_Got_It_from_Here..._Thank_You_4_Your_Service
https://arxiv.org/abs/1603.09320
https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://github.com/spotify/annoy
https://www.microsoft.com/en-us/research/project/project-akupara-approximate-nearest-neighbor-search-for-large-scale-semantic-search/

VECTOR DATABASES

23

id name year lyrics

Id1 Enter the Wu-Tang 1993 <text>

Id2 Run the Jewels 2 2015 <text>

Id3 Liquid Swords 1995 <text>

Id4 We Got It from Here 2016 <text>

Embeddings
Id1 → [0.32, 0.78, 0.30, ...]

Id2 → [0.99, 0.19, 0.81, ...]

Id3 → [0.01, 0.18, 0.85, ...]

Id4 → [0.19, 0.82, 0.24, ...]

⋮

Vector
Index

HNSW, IVFFlat
Meta Faiss, Spotify Annoy,

Microsoft DiskANN

Transformer

https://db.cs.cmu.edu/
https://www.youtube.com/watch?v=pJk0p-98Xzc
https://en.wikipedia.org/wiki/Run_the_Jewels_2
https://youtu.be/5qDhaWqeNMc
https://en.wikipedia.org/wiki/We_Got_It_from_Here..._Thank_You_4_Your_Service
https://arxiv.org/abs/1603.09320
https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://github.com/spotify/annoy
https://www.microsoft.com/en-us/research/project/project-akupara-approximate-nearest-neighbor-search-for-large-scale-semantic-search/

VECTOR DATABASES

23

id name year lyrics

Id1 Enter the Wu-Tang 1993 <text>

Id2 Run the Jewels 2 2015 <text>

Id3 Liquid Swords 1995 <text>

Id4 We Got It from Here 2016 <text>

Embeddings
Id1 → [0.32, 0.78, 0.30, ...]

Id2 → [0.99, 0.19, 0.81, ...]

Id3 → [0.01, 0.18, 0.85, ...]

Id4 → [0.19, 0.82, 0.24, ...]

⋮

Vector
Index

HNSW, IVFFlat
Meta Faiss, Spotify Annoy,

Microsoft DiskANN

[0.02, 0.10, 0.24, ...]

Transformer

Find albums with lyrics about

running from the police

and released after 2005

Query

year > 2005

https://db.cs.cmu.edu/
https://www.youtube.com/watch?v=pJk0p-98Xzc
https://en.wikipedia.org/wiki/Run_the_Jewels_2
https://youtu.be/5qDhaWqeNMc
https://en.wikipedia.org/wiki/We_Got_It_from_Here..._Thank_You_4_Your_Service
https://arxiv.org/abs/1603.09320
https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://github.com/spotify/annoy
https://www.microsoft.com/en-us/research/project/project-akupara-approximate-nearest-neighbor-search-for-large-scale-semantic-search/

VECTOR DATABASES

23

id name year lyrics

Id1 Enter the Wu-Tang 1993 <text>

Id2 Run the Jewels 2 2015 <text>

Id3 Liquid Swords 1995 <text>

Id4 We Got It from Here 2016 <text>

Embeddings
Id1 → [0.32, 0.78, 0.30, ...]

Id2 → [0.99, 0.19, 0.81, ...]

Id3 → [0.01, 0.18, 0.85, ...]

Id4 → [0.19, 0.82, 0.24, ...]

⋮

Vector
Index

HNSW, IVFFlat
Meta Faiss, Spotify Annoy,

Microsoft DiskANN

[0.02, 0.10, 0.24, ...]

Transformer

Find albums with lyrics about

running from the police

and released after 2005

Query

year > 2005

https://db.cs.cmu.edu/
https://www.youtube.com/watch?v=pJk0p-98Xzc
https://en.wikipedia.org/wiki/Run_the_Jewels_2
https://youtu.be/5qDhaWqeNMc
https://en.wikipedia.org/wiki/We_Got_It_from_Here..._Thank_You_4_Your_Service
https://arxiv.org/abs/1603.09320
https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://github.com/spotify/annoy
https://www.microsoft.com/en-us/research/project/project-akupara-approximate-nearest-neighbor-search-for-large-scale-semantic-search/

VECTOR DATABASES

The vector model is not a substantial deviation from
existing models that requires new DBMS architectures.

Vector DBMSs offer better integration with AI tooling
ecosystem (e.g., OpenAI, LangChain).

Discussion:
→ Every major DBMS will provide native vector index support in

the near future.
→ The time from "ChatGPT Buzz" (Q4'22) to existing DBMSs

announcing support for vectors (Q3'23) is telling.

24

https://db.cs.cmu.edu/

VECTOR DATABASES

The vector model is not a substantial deviation from
existing models that requires new DBMS architectures.

Vector DBMSs offer better integration with AI tooling
ecosystem (e.g., OpenAI, LangChain).

Discussion:
→ Every major DBMS will provide native vector index support in

the near future.
→ The time from "ChatGPT Buzz" (Q4'22) to existing DBMSs

announcing support for vectors (Q3'23) is telling.

24

https://db.cs.cmu.edu/

VECTOR DATABASES

The vector model is not a substantial deviation from
existing models that requires new DBMS architectures.

Vector DBMSs offer better integration with AI tooling
ecosystem (e.g., OpenAI, LangChain).

Discussion:
→ Every major DBMS will provide native vector index support in

the near future.
→ The time from "ChatGPT Buzz" (Q4'22) to existing DBMSs

announcing support for vectors (Q3'23) is telling.

24

https://db.cs.cmu.edu/

42

New Startups!
Lots of $$$!

SQL is great!

SQL is bad!
SQL adopts

new features

Vector
Databases

Graph
Databases

Document
Databases

2030???

https://db.cs.cmu.edu/

RELATIONAL IS NOT PERFECT

Many non-relational DBMSs provide a better "out-of-
the-box" experience than relational DBMSs.
→ Pandas / Jupyter notebooks are still more popular.

Relational DBMS developers should strive to make
their systems easier to use and adaptive.
→ Cloud DBaaS hide much of the provisioning / configuration for

high availably and durability.

AI/ML helps tuning + optimization.

43

+

https://db.cs.cmu.edu/

PARTING THOUGHTS

People will continue to make the same mistakes in
future DBMS projects.

The demarcation lines of DBMS categories will
continue to blur over time as specialized systems
expand the scope of their domains.

The relational model and declarative query languages
promote better data engineering.

44

https://db.cs.cmu.edu/

https://db.cs.cmu.edu/

https://cmudb.io/pgconf23

Email: pavlo@cs.cmu.edu

Twitter: @andy_pavlo

Mastodon: @andy_pavlo@discuss.systems

LinkedIn: linkedin.com/in/andy-pavlo

	Introduction
	Slide 1

	History
	Slide 2: DATABASES
	Slide 3: DATABASES
	Slide 4: DATABASES
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: TALK OUTLINE
	Slide 11: TALK OUTLINE

	Key-Value
	Slide 12: KEY-VALUE STORES
	Slide 13: KEY-VALUE STORES

	MapReduce
	Slide 14: MAPREDUCE SYSTEMS
	Slide 15: MAPREDUCE SYSTEMS
	Slide 16: MAPREDUCE SYSTEMS

	Document
	Slide 17: DOCUMENT DATABASES
	Slide 18: DOCUMENT DATABASES
	Slide 19: DOCUMENT DATABASES
	Slide 20: DOCUMENT DATABASES
	Slide 21: DOCUMENT DATABASES
	Slide 22: DOCUMENT DATABASES

	Column-Family
	Slide 23: COLUMN-FAMILY / WIDE-COLUMN

	Graphs
	Slide 24: GRAPH DATABASES
	Slide 25: GRAPH DATABASES
	Slide 26: GRAPH DATABASES
	Slide 27: GRAPH DATABASES

	Text Search
	Slide 28: TEXT SEARCH ENGINES
	Slide 29: TEXT SEARCH ENGINES

	Array
	Slide 30: ARRAY DATABASES
	Slide 31
	Slide 32: ARRAY DATABASES

	Vector
	Slide 33: VECTOR DATABASES
	Slide 34: VECTOR DATABASES
	Slide 35: VECTOR DATABASES
	Slide 36: VECTOR DATABASES
	Slide 37: VECTOR DATABASES
	Slide 38: VECTOR DATABASES
	Slide 39: VECTOR DATABASES
	Slide 40: VECTOR DATABASES
	Slide 41: VECTOR DATABASES

	Errata
	Slide 42
	Slide 43: RELATIONAL IS NOT PERFECT

	Conclusion
	Slide 44: PARTING THOUGHTS
	Slide 45
	Slide 46

