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DATABASES

A database's data model is the underlying structure
and organization of data within the database.

The relational model (RM) + SQL have
dominated the database landscape since the 1980s.

But every 10 years somebody invents a RM/SQL
"killer" that addresses some deficiency...
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What Goes Around Comes Around

Michael Stonebraker
Joseph M. Hellerstein

Abstract

This paper provides mmary of 35 years of data model proposals, grouped into 9
different eras. We discuss the proposals of each era, and show that there are only a few
basic data modeling ideas, and most have been around a long time. Later proposals
inevitably bear a strong to certain carlier proposals. Hence, itis a
worthwhile exercise to study previous proposals.

In addition, we present the lessons learned from the exploration of the proposals in each
era. Most current researchers were not around for many of the previous eras, and have
limited (if any) ing of what was previously learned. There is an old adage that
he who does not understand history is condemned to repeat it. By presenting “ancient
history™, we hope to allow future researchers to avoid replaying history.

Unfortunately, the main proposal in the current XML era bears a striking resemblance to
the CODASYL proposal from the early 1970's, which failed because of its complexity.
Hence, the current era is replaying history, and “what goes around comes around”.
Hopefully the next era will be smarter.

I Introduction

Data model proposals have been around since the late 1960's, when the first author
“came on the scene”. Proposals have continued with surprising regularity for the
intervening 35 years. Moreover, many of the current day proposals have come from
researchers too young to have learned from the discussion of earlier ones. Hence, the
purpose of this paper is to summarize 35 years worth of “progress™ and point out what
should be learned from this lengthy exercise.

‘We present data model proposals in nine historical epochs:

Hierarchical (IMS): late 1960's and 1970's
Network (CODASYL): 1970's

Relational: 1970°s and early 1980°s
Entity-Relationship: 1970°s

Extended Relational: 1980's

Semantic: late 1970's and 1980's
Object-oriented: late 1980's and carly 1990's
Object-relational: late 1980°s and early 1990's

https://cmudb.io/wgaca

WHAT GOES AROUND COMES AROUND
READINGS IN DB SYSTEMS, 4TH EDITION (2005)

Hierarchical (1960s)
Network (1960s) BCE
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Relational (1970s)
Entity-Relationship (1970s)
Extended Relational (1980s)
Semantic (1980s)
Object-Oriented (1980s)
Object-Relational (1990s)
Semi-Structured/ XML (1990s)
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What Goes Around Comes Around... And Around...

Michael Stonebraker
Massachusetts Institute of Technology
stonebraker@csail.mit.edu

ABSTRACT

Two decades ago, one of us co-authored a paper com-
menting on the previous 40 years of data modelling re-
search and development [98]. That paper demonstrated
that SQL and the relational model (RM) reigned supreme
for database management systems (DBMSs), and all the
efforts to completely replace cither the query language
or the data model had failed. Instead, SQL absorbed the
best ideas from these alternative approaches.

We revisit this issue and argue that little has changed
since 2005. Once again there are repeated efforts 1o re-
place either SQL or the RM. and none have been suc-
cessful. Instead, in the last few years the conventional
wisdom in industry has swung back to relational DBMSs
that use SQL. We suggest that system builders examine
history before they invent more query languages or data
models that are likely to fail. We also discuss the evolu-
tion of DBMS implementations and argue that the major
advancements have been in RM systems.

1 Introduction

In 2005, one of the authors participated in writing a
chapter for the Red Book titled “What Goes Around Comes
Around"” [98]. That paper cxamined the major data mod-
elling movements since the 1960s, Those were:
Hierarchical (e.g., IMS): late 1960s and 19705
Network (e.g.. CODASYL): 1970s

Relational: 1970s and early 1980s
Entity-Relationship: 19705

Extended Relational: 19805

Semantic: late 1970s and 1980

Object-Oriented: late 1980s and early 1990s
Object-Relational: late 1980s and early 1990s
Semi-structured (e.g.. XML): late 1990s and 2000s

Our conclusion was that the relational model with an
extendable type system (i.c.. object-relational) has dom-
inated all comers, and nothing clsc has succeeded in
the marketplace. Although many of the non-relational
DBMSs that were covered in 2005 stll exist today, their
vendors have relegated them to legacy maintenance mode
and nobody is building new applications on them. This
persistence is more of a testament to the “stickiness™ of

Andrew Pavlo
Carnegie Mellon University
pavlo@cs.cmu.edu

data rather than the lasting power of these systems. In
other words, there still are many IBM IMS databases
running today because it is expensive and risky to switch
them 10 use a modem DBMS. But no start-up would
willingly choose to build a new application on IMS.

A lot has happened in the world of databases since our
2005 survey. During this time, DBMSs have expanded
from their roots in business data processing and are now
used for almost every kind of data. This led to the “Big
Data” era of the early 20105 and the current trend of inte-
grating machine learning (ML) with DBMS technology.

In this paper, we analyze the last 18 years of data
model and query language activity in databases. We
structure our commentary into the following arcas: (1)
MapReduce Systems, (2) Key-value Stores, (3) Docu-
ment Databases, (4) Column Family / Wide-Column,
(5) Text Search Engines, (6) Array Databases, (7) Vec-
tor Databases, and (8) Graph Databases.

We contend that most systems that deviate from SQL.
or the RM are either already dead or are niche markets at
the present time. Many systems that started out rejecting
the RM with much fanfare (think NoSQL) have since
changed their tune and now expose a SQL-like interface
for RM databases. Meanwhile, SQL incorporated the
best parts of these failed efforts to expand its support for
modern applications and remain relevant. We are not
optimistic that future deviations will prove productive.

Although there has not been much change in the RM's
fundamentals, there has been a dramatic change in RM
system implementations. In the second part of this pa-
per, we discuss advancements in DBMS architectures
that address changing application and hardware land-
scapes: (1) Columnar Systems, (2) Cloud Databases.
(3) NewSQL Systems, (4) Hardware Accelerators, and
(5) Blockchain Databases.

Some of these have caused profound changes to suc-
cessful DBMS implementations; others are merely trends
based on faulty premises or bad ideas. But importantly,
none of them have caused a new data model to emerge
that supplants the RM.

In summary, the time period since the 2005 survey
has left SQL and the RM more dominant than ever. We

CMU-DB
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TALK OUTLINE

Key-Value Stores (1990s)

MapReduce Systems (2000s)
Document/JSON Databases (2000s)
Column-family / Wide-Column (2000s)
Graph Databases (2000s)

Text Search Engines (2000s)

Array Databases (1990s)

Vector Databases (2020s)
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TALK OUTLINE

Key-Value Stores (1990s)
MapReduce Systems (2000s)
Document/JSON Databases (2000s)
Column-family / Wide-Column (2000s)
Graph Databases (2000s)
Text Search Engines (2000s)
Array Databases (1990s) TLDR: RM+ SQL remains

Vector Databases (2020s)

the best approach for
most applications.
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KEY-VALUE STORES

Associative array that maps a key to a value.

— Value is typically an untyped byte array
that the DBMS cannot interpret.

(key, value)

@ Distributed KV Stores:

— Shared-nothing DBMSs for caching + session data.
— Provide higher/predictable performance instead of a more
complex query language and features.

amazon
DynamoDB

<EROSPIKE

Sieens (02 Embedded Storage Managers:

— Low-level API systems that run in the same address space as a

Rl higher-level application.

WIREDT G ER

$2CMU-DB
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KEY-VALUE STORES

Some distributed KV stores realized that expressive

APIs are important and evolved into document stores.

— [f value is opaque, applications must implement more complex
logic / types.

— Better to start with a RM DBMS than to contort a KV DBMS
to use a more complex data model (e.g., Postgres hstore).

Discussion:

— Embedded KV storage managers make it easier to create full-
featured DBMSs.
— Very few commercial success stories for KV storage managers.
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MAPREDUCE SYSTEMS

Distributed batch-oriented programming and execution
model for analyzing large data sets.

Data model decided by user-written functions.
— Map: UDF that performs computation + filtering
— Reduce: Analogous to GROUP BY operation.

SELECT map() FROM crawl_table GROUP BY reduce();

“hesbep MapReduce Frameworks:

MAPR — Internal implementation at Google (2003).

Yy, — Yahoo! created the open-source version Hadoop (2005).
HORTONWORKS'

$2CMU-DB
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MapReduce complements DBMSs since
databases are not designed for extract-
transform-loaq tasks, a MapReduce Specialty.

BY MICHAEL STONEBRAKER, DANIEL ABADI,
DAVID J. DEWITT, SAM MADDEN, ERIK PAULSON,
ANDREW PAVLO, AND ALEXANDER RASIN

MapREdUCe
and Parallel
DBMSs:
Friends

or Foes?

THE MAPREDUCE’ (MR) PARADIGM has been hailed asa
revolutionary new platform for large-scale, massively
parallel data accesg,1¢ Some proponents claim the
extreme scalability of MR wil] relegate relational
database Mmanagement systemsg (DBMS) to the status
oflegacy technology. At least one enterprise, Facebook,
has implemented » large data warehouse system
using MR technology rather than a DBMs, 1

Here, we argue that using MR systems to perform
tasks that are best suited for DBMSs yields less than
satisfactory results, concluding that MR js more
like an extract-transform-load (ETL) system than a

64 COMMUNICATIONS OF THE ACM | JANUARY 2010 | yor 53 1 ND. 2

DBMS, as it quickly loads and pro-
cesses large amounts of data in an
ad hoc manner, As such, it comple-
ments DBMS technology rather than
competes with it. We also discuss the
differences in the architectural deci-
sions of MR systems and database
systems and provide insight into how
the systems should complement one
another,

The technology press has been fo-
cusing on the revolution of “cloyd
computing,” a paradigm that entajls
the harnessing of large numbers of
Processors working in parallel to solve
computing problems, In effect, this
suggests constructing a data center by
lining up a large number of low-end
servers, rather than deplo_ving asmall-
€r set of high-end servers, Along with
this interest in clusters has come a
iferation of tools forprogramming

them. MR is one such tool, an attrac-
tive option to many because it provides
a simple mode] through which users
are able to express relatively sophisti-
cated distributed programs,

Given the interest in the MR model|
both commercially and academically,
it is natural to ask whether MR sys-
tems should replace parallel database
systems. Parallel DBMss were first
available commercially nearly two de-
cades ago, and, today, systems (from
about a dozen vendors) are available,
As robust, high-performance comput-
ing platforms, they provide a high-
level Programming environment that
is inherently parallelizable, Although
it might seem that MR and paralle]
DBMSs are di[fcrcm, it is possible to
write almost any parallel-proces ing
task as eithera set of database queries
oraset of MR jobs,

Our discussions with MR users lead
Us to conclude that the most common
use case for MR is more like an ETL sys-
tem. As such, it is complementary to
DBMSs, not a competing technology,
since databases are not designed to be
good at ETL tasks Here, we describe
what we believe he ideal use of MR
technology and highlight the different
MR and parallel DMBS markets,
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MAPREDUCE SYSTEMS

People remembered that procedural query
SHIVE

languages are (usually) a bad idea.

. MAPR-DB
MR vendors put SQL engines on top of Hadoop.
Hadoop technology/services market crashed. H%Q
Google announced they were dropping MR in 2014.
Discussion: presto =
— Companies kept HDFS but replaced Hadoop compute layer ApAcHE
with relational query engines.
— Aspects of MR frameworks carried into distributed DBMSs Spr”(\z
(disaggregated compute/storage, shuffle phase).
— Rise of Hadoop alternatives (that eventually added SQL). %ank
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DOCUMENT DATABASES

Represent a database as a collection of document objects

that contain a hierarchy of field/value pairs.

— Each document field is identified by a name.

— A field's value is either a scalar type, array of values, or another
document.

— Applications do not predefine schema.

{<field>: <scalar|[values]|{document}>}

O MongoB.  NoSQL Document-oriented Systems:

s8CouchDB  _, Non-standard / procedural query languages

R@K%NDB — Defined by what they lack instead of what they provide.
Couchbase

$2CMU-DB
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DOCUMENT DATABASES

Document model is the same as previous models

with many of the same problem:s.
— Object-Oriented (1980s)
— Semi-Structured / XML (1990s).

Core idea is denormalization ("pre-joining"):
— Avoid object-relational impedance mismatch between
application code and DBMS data model.

— Avoid need for joins / multiple queries to retrieve data
related to an object (N+1 SELECT Problem).

VERSANT

¢ ObjectStore

.

..MarkLogiC@
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DOCUMENT DATABASES

Almost every major NoSQL DBMS relearned

(most) of the lessons from the 1970s:

— SQL APIs are a good idea.

— Schemas + integrity constraints are a good idea.
— Transactions are a good idea.

— Logical/physical data independence is a good idea.
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DOCUMENT DATABASES

Almost every major NoSQL DBMS relearned hmazhye ? FartiQL

(most) of the lessons from the 1970s: £ cassandra & CQL
— SQL APIs are a good idea. = AQL

— Schemas + integrity constraints are a good idea.
— Transactions are a good idea.
— Logical/physical data independence is a good idea.

Q Couchbase = SQL++

$2CMU-DB
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DOCUMENT '

0 MongoDB.

Almost every major NoSQL
(most) of the lessons from t} ,

lntroducing the AtlasSQL

nterface, Connectors, and

— SQL APIs are a good idea.

- Drivers
— Schemas + integrity constrain

— Transactions are a gogd idea.
— Logical/physical data indepe

Alexi Antonino
@ June 7, 2022 | Updated: June 8, 2022
#MongoDB World

are accustomed to working with SQL,
knowledge and preferred tools. Additionally,
Atlas Datg Federation for jts query en
cloud object stores using q single SQ

because the Atlas SQL Interface leverages
gine, you can access data across Atlas clusters and
L query.

The Atlas SQL. Connectors and Drivers allow You to connect MongoDB as g data source

for your SQL-based business intelligence (Bl) and analytics tools, resulting in faster
insights and consistent analysis on the freshest datg. You
visualizations and dashboards to more easil

Structured datq — without relying on time-c

Il be able to seamlessly create
Y extract hidden value in your multj-

onsuming procedures like data movement or
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DOCUMENT DATABASES

Almost every major NoSQL DBMS relearned Hmaziyg * PartiQL

(most) of the lessons from the 1970s: £ cassandra & CQL
— SQL APIs are a good idea. = AQL

— Schemas + integrity constraints are a good idea.
— Transactions are a good idea.
— Logical/physical data independence is a good idea.

Q Couchbase = SQL++

Discussion:

— SQL:2016 introduced JSON types + operators.

— The intellectual distance between relational+JSON DBMSs and
document+SQL DBMSs has shrunk.
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COLUMN-FAMILY / WIDE-COLUMN

Reduction of the document data model that only
supports one level of nesting.

— A record's value can only be a scalar or an array of scalars.
— Deficiencies are the same as the document model.

{<field>: <scalar|[values]>}

® Column-Family Systems:

AP ACHE

HBASE — First implementation was Google's BigTable (2004)
“R& cassandra . Copied by several Internet start-ups.
SCYLLA.

$2CMU-DB
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GRAPH DATABASES

Direct multigraph structure that supports key/value

labels for nodes and edges.
— Property Graph vs. Resource Description Framework (RDF)

Node (id, {key: value}x*)
Edge (node_id,, node_id,, {key: value}x*)

@neosj Property Graph DBMSs:

~orientps  — Provide graph-oriented traversal APIs.

y 5
) ticercaph  — Inefficient schemaless storage.
I MEM

$2CMU-DB
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GRAPH DATABASES

Graph model is the same as the network model from
CODASYL (1970s) with same issues.

Advancements in algorithms and systems will diminish
the perceived advantage of specialized graph DBMSs.

— Worst-case Optimal Joins
— Vectorized Query Execution
— Factorized Query Processing

Discussion:

— SQL:2023 introduced SQL/PGQ (based on Neo4j's Cypher)
Subset of the emerging GQL standard.

— Studies show that RM DBMSs outperform graph DBMSs.
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DuckPGQ:
Efficient Property Graph Queries in an analytical RDBMS

Daniel ten Wolde Tavneet Singh
cwi cwi
The Netherlands The Netherlands

dlitw@cwi.nl
ABSTRACT

In the past decade, Property graph databases have emerged as a
Browing niche in data management. Many native graph systems
and query languages have been created, but the functionality and
performance still leave much room for improvement. The upcoming
SQL:2023 will introduce the Property Graph Queries (SQL/PGQ)
sub-language, Eiving relational systems the Opportunity to standard-
f2¢ Eraph queries, and provide mature graph query functionality,

We argue that (i) competent graph data systems must build on
all technology that makes Up a state-of-the-art relational system,
(ii) the graph use case requires the addition to that of 4 many-
source/destination path-finding algorithm and compact graph rep-
resentation, and (ii) incites research in practical worst-case-optimal
Joins and factorized query processing techniques

We outline our design of DuckPGQ that follows this recipe,
by adding efficient SQLPGQ support to the popular open-source
“embeddable analytics” relational database system DuckDB, also
originally developed at CWI, Our design aims at minimizing technj.
cal debt using an approach that relics on efficient vectorized UDFs.
We benchmark DuckPGQ showing encouraging performance and
scalability on large graph data sets, but also reinforcing the need
for future rescarch under ().

tavneet singh@cwi.nl

1 INTRODUCTION
Graph Database systems have emerged as a growing niche in data
management, with many Property graph systems [7] such as Neodj,
TigerGraph, Dgraph, Titan and AWS Neptune becoming available,
all using different query languages (i.c., Cypher, GSQL, GraphQL,
Gremlin, SPARQL [2)). Property Graphs are directed graphs consist.
ing of vertex and edge elements; where elemen ts may have labels
and assaciated key value properties; Property graph systems are
uite young, and performance of analytical queries g large graphs
hasbeen observed to be significantly lower than relational database
systems, on graph queries that can also be formulated as SQL [16],
In RDBMS designs, there have been significant performance
mprovements in the past decade, with analytical systems such
as Snowflake and Databricks adopting principles like skippable
columnar storage with lightweight compression [24] (also pop-
ular in open-source formats such a5 Parquet and ORC), efficient
load-balanced multi-core parallelism using “morsel-driven” schedul-
ing [15] and efficient Query execution techniques [14): either using

Y 40y b blished under the Creative Commons Atirivation 4. International

{CCBY 4.0 bcense. Authors reserve their rights 1o disseminate the work on their
i oo corporate Web stes with the appropriate st Peovided that you
atuibute the origioal work to the suthors ang (v pags 13th Annual Conference on

oy SYstems Reseach (CIDR '23). January 3-11, 2050 Amsterdam, The

movative I
Netherlands

Gabor Szarnyas Peter Boncz
cwr Ccwi
The Netherlands The Netherlands

gabor.szarnyas@cwi.n boncz@cwi.nl
yectorized query execution or Just-In-Time low-level compilation
of queries into executable Pprograms,

The upcoming SQL:2023 introduces the SQL/PGQ (Property
Graph Queries) sub-language [8), which allows (1) to define graph
views over relational tables and (2) to formulate graph pattern
matching and path-finding operations using a SQL syntax. These
features narrow the functionality gap between RDBMSs and native
&raph systems, and unify the feature space with a common graph
duery sub-language, as PGQ is also a subset of the upcoming IS0
Graph Query Language GQL [8] that native graph systems intend
o adopt. GQL will add graph updates, qQuerying multiple graphs
and queries that retum a graph resu, rather than a binding fable,

SQLIPGQ by example. If we have relationa tables Stutent and
Cellege and connecting tables know and enrol, we can define a prop-
erty graph pg consisting of person vertexes connected to each other
by edges with label know and to College vertexes via s tudiesar edges:!

CREATE PROPERTY GRAPH pg

VERTEX TABLES(

Student PROPER ESCid.nane birthdate)  apg, Person,

College PROPERTIES(id.college))

EDGE TABLES(

know  SOURCE Person Kev(id) DESTINATION Person Kev(id)
PROPERTIES (createDate, msgCount ),

enrol SOURCE Student KEY(id) bestinaTran College Kev(id)
PROPERTIES (classYear) LABEL studiesat)

[n the below seLecr query the waroy will bind variable 4 to all
Vvertexes that satisfy a label-test :Person and have property name=
11", The comma Separating the two pattern expressions implies a
conjunction? with matching variable bindings: it requires  to also
have an edge Iabeled stuiesat towards aCollege c:
SELECT S1uy. collese, study.pig FRON GRAPH TABLE (pg,
MATCH (a:Person WHERE a.mage
(a)-r Studiesat]->(c College)
COLUMNS (e college, ELEMENT_ID(a) As pid)) study

The watcn clause produces a conceptual binding table with each
row holding matched bindings and one colum, for each variable,
These bindings denote elements (e £. @ vertex or edge); the coumas
clause retrieves scalar values from those. The example retrieves the
Property c.college and the implicit element identifier® of 3, as the
columns of a temporary caspi.1agL: named study in the rhow clause.

The table name is the defaut label DuckPGQ allows an additional LABEL list of mux
Jetigth 64, and 2 BIGINT LABELFoH co. specir columa. Elements only haye 5
Jabel from the lst f their corresponding bit s ot his allows €. 1o express class
awenbership with inheritance in labels. DuckPGQ wil s Support having the same
tabelin mukiple tables, as clement patterns st 1 bind to a single table.
*Inside path expressians,the | will N1 0N pattern bindings, and 4] stands for UNIoN
AL though neiher i supported initilly in Dekiis

ELENENT_IO() is implementation-dependent. in DuckPGQ it returns s rowfd
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TEXT SEARCH ENGINES

Systems that extract structure (e.g., meta-data, indexes)

from text data and support queries over that content.

— Tokenize documents into "bag of words" and then build
inverted indexes over those tokens.

— No data model because text data is inherently unstructured.

Core ideas pioneered by Cornell's SMART (1965).

= elasticsearch

splunk > Text Search Engines:
vvespa Quickly parse, index, and store large documents.

Solf m — Built-in support for noise/salient words + synonyms.
o~
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TEXT SEARCH ENGINES

Leading RM DBMSs include full-text search indexes

but their adoption is stymied by non-model reasons.

— Non-standard SQL operations / syntax.

— Text data is large but not high importance. DBMS storage is
always more expensive than generic storage.

Discussion:

— Maintaining a separate text search DBMS should be
unnecessary but lots of people still do it.

— All DBMS vendors are augmenting inverted-index text search
with vector-based similarity search...
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ARRAY DATABASES

Collection of data where each element is identifiable by

one or more dimension offsets.
— Vectors (1D), Matrices (2D), Tensors (+3D)
— Dimensions do not have to align with integer grids.

(dimension,, dimension,,... [valuesl])

|
resdaman’  Array DBMSs:

— Specialized storage managers and execution engines.

€SciDB  — Sparse vs. Dense Arrays
[tile]DB
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ARRAY DATABASES

Supporting arrays as first-class data types violates the
original RM vision. But this is a good example of RM
evolving to meet the needs of applications.

Discussion:

— SQL:2023 added multi-dimensional arrays (SQL/MDA).

— Array data access patterns do not follow row-oriented or
columnar patterns. Likely requires new execution engine.
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VECTOR DATABASES

Document DBMSs with specialized indexes for

(approximate) similarity search on 1D arrays.
— Vectors represent embedding of corresponding object.

{vector: [values],
metadata: {key: value}*}

&3 Pinecone Vector DBMSs:

-~ Weaviate . g o .
@ mil — Accelerate approximate nearest neighbor search via indexes.
miivus

Qdrant — Not meant to be primary / database-of-record storage.
ran

$2CMU-DB



https://db.cs.cmu.edu/

VECTOR DATABASES

id name year lyrics
Id1 |Enter the Wu-Tang 1993 j<text>
Id2 |Run the Jewels 2 2015 J<text>
Id3 |Liquid Swords 1995 J<text>
Id4 |We Got It from Here |2016 j<text>

| RAARes

$2CMU-DB

@ OpenAI ¥ | Hugging Face

» I »

Embeddings

Id1 » [0.32, 0.78, 0.30, ...
Id2 » [0.99, 0.19, 0.81, ...
Id3 » [0.01, 0.18, 0.85, ...
Id4 » [0.19, 0.82, 0.24, ...

¥

Vector

| SNy SN Ry NN R S

Index

HNSW, IVFFlat
Meta Faiss, Spotify Annoy,
Microsoft DiskANN
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VECTOR DATABASES

id name year lyrics
Id1 |Enter the Wu-Tang 1993 j<text>
Id2 |Run the Jewels 2 2015 J<text>
Id3 |Liquid Swords 1995 J<text>
Id4 |We Got It from Here |2016 j<text>

| RAARes
Query

Find albums with lyrics about

running from the

olice

t

$2CMU-DB

Embeddings

@OpenN ¥ Hugging Face Id1 > [0.32, 0.78, 0.30, ...

Id2 » [0.99, 0.19, 0.81, ...

Id4 » [0.19, 0.82, 0.24, ...

Vector
Index

| SNy SN Ry NN R S

Ranked List of 1ds

HNSW, IVFFlat
Meta Faiss, Spotify Annoy,

Microsoft DiskANN
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name

VECTOR DATABASES

Id1 Enter the Wu-Tang 1993 j<text>
Id2 Run the Jewels 2 2015 j<text>
Id3 Liquid Swords 1995 j<text>

$2CMU-DB

<text>

“~ | Hugging Face

@ OpenAl

» I »

Embeddings

Id1 » [0.32, 0.78, 0.30, ...
Id2 » [0.99, 0.19, 0.81, ...
Id3 » [0.01, 0.18, 0.85, ...
Id4 » [0.19, 0.82, 0.24, ...

3

Vector

Index

HNSW, IVFFlat

Meta Faiss, Spotify Annoy,

Microsoft DiskANN

| SNy SN Ry NN R S
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VECTOR DATABASES

id name year lyrics

Id1 |Enter the Wu-Tang 1993 | <text>

Id2 [Run the Jewels 2 2015 | <text>

Id3 |Liquid Swords 1995 [<text>

Id4 [We Got It from Here |2016 |<text>

Query

Find albums with lyrics about

@ OpenAl

»

running from the police
and released after]2005

$2CMU-DB

“~ | Hugging Face

»

[0.02, 0.10, 0.24,

Embeddings

Id1 » [0.32, 0.78, 0.30, ...
Id2 » [0.99, 0.19, 0.81, ...
Id3 » [0.01, 0.18, 0.85, ...
Id4 » [0.19, 0.82, 0.24, ...

¥

year > 2005

Vector
Index

HNSW, IVFFlat
Meta Faiss, Spotify Annoy,

Microsoft DiskANN
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VECTOR DATABASES

id name year lyrics

Id1 |Enter the Wu-Tang 1993 | <text>

Id2 |Run the Jewels 2 2015 | <text>

Id3 |Liquid Swords 1995 | <text>

Id4 |We Got It from Here |2016 |<text>
Query

Find albums with lyrics about

running fromt

and released after]2005

he police

@ OpenAl

é_l"
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“~ | Hugging Face
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-----------------‘

| Embeddings

I 1d1 » [0.32, 0.78, 0.30, ...
| Id2 » [0.99, 0.19, 0.81, ...
I 1d3 > [0.01, 0.18, 0.85, ...
| Id4 > [0.19, 0.82, 0.24, ...

~N ¥
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year > 2005

Vector
Index
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Microsoft DiskANN
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VECTOR DATABASES

The vector model is not a substantial deviation from
existing models that requires new DBMS architectures.

Vector DBMSs offer better integration with Al tooling
ecosystem (e.g., OpenAl, LangChain).

Discussion:

— Every major DBMS will provide native vector index support in
the near future.
— The time from "ChatGPT Buzz" (Q4'22) to existing DBMSs

announcing support for vectors (Q3'23) is telling.
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VECTOR DATABASES

Press Release

Oracle Introduces Integrated
Vector Database to Augment
Generative Al and Dramatically
Increase Developer Productivity

New Al vector similarity search in Oracle Database 23c allows the combination of search on

semantic and business data resulting in highly acc

Oracle CloudWorld, Las Vegas— September 19,2023

urate answers quickly and securely
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RELATIONAL IS NOT PERFECT

Many non-relational DBMSs provide a better "out-of-

the-box" experience than relational DBMSs.
— Pandas / Jupyter notebooks are still more popular.

Relational DBMS developers should strive to make

their systems easier to use and adaptive.
— Cloud DBaaS hide much of the provisioning / configuration for

high availably and durability.

PostgreSQL

AI/ML helps tuning + optimization.
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PARTING THOUGHTS

People will continue to make the same mistakes in
future DBMS projects.

The demarcation lines of DBMS categories will
continue to blur over time as specialized systems
expand the scope of their domains.

The relational model and declarative query languages
promote better data engineering.
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Email: pavlo@cs.cmu.edu
Twitter: @andy_pavlo
Mastodon: @andy_pavlo@discuss.systems
LinkedIn: linkedin.com/in/andy-pavlo

https://cmudb.io/pgconf23
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