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DATABASES

A database's data model is the underlying structure 
and organization of data within the database.

The relational model (RM) + SQL have 
dominated the database landscape since the 1980s.

But every 10 years somebody invents a RM/SQL 
"killer" that addresses some deficiency… 
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New Startups!
Lots of $$$!

SQL is great!

SQL is bad!
SQL adopts

new features

slow
OLD

AWKWARD
Inconsistent

Not WEBSCALE
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Hierarchical (1960s)

Network (1960s)

Relational (1970s)

Entity-Relationship (1970s)

Extended Relational (1980s)

Semantic (1980s)

Object-Oriented (1980s)

Object-Relational (1990s)

Semi-Structured/XML (1990s)

https://cmudb.io/wgaca 

WHAT GOES AROUND COMES AROUND
READINGS IN DB SYSTEMS, 4TH EDITION (2005)
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Key-Value (1990s)

MapReduce (2000s)

Document/JSON (2000s)

Column-family (2000s)

Graph (2000s)

Text Search (1960s)

Array (1990s)

Vector (2020s)

WHAT GOES AROUND COMES AROUND… 
AND AROUND…
UNDER SUBMISSION (2023)
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TALK OUTLINE

Key-Value Stores (1990s)

MapReduce Systems (2000s)

Document/JSON Databases (2000s)

Column-family / Wide-Column (2000s)

Graph Databases (2000s)

Text Search Engines (2000s)

Array Databases (1990s)

Vector Databases (2020s)
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TLDR: RM+ SQL remains 
the best approach for 
most applications.
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KEY-VALUE STORES

Associative array that maps a key to a value.
→ Value is typically an untyped byte array

that the DBMS cannot interpret.

7

(key, value)

Distributed KV Stores:
→ Shared-nothing DBMSs for caching + session data.
→ Provide higher/predictable performance instead of a more 

complex query language and features.

Embedded Storage Managers:
→ Low-level API systems that run in the same address space as a 

higher-level application.
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KEY-VALUE STORES

Some distributed KV stores realized that expressive 
APIs are important and evolved into document stores.
→ If value is opaque, applications must implement more complex 

logic / types.
→ Better to start with a RM DBMS than to contort a KV DBMS 

to use a more complex data model (e.g., Postgres hstore).

Discussion:
→ Embedded KV storage managers make it easier to create full-

featured DBMSs.
→ Very few commercial success stories for KV storage managers.
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MAPREDUCE SYSTEMS

Distributed batch-oriented programming and execution 
model for analyzing large data sets.

Data model decided by user-written functions.
→ Map: UDF that performs computation + filtering
→ Reduce: Analogous to GROUP BY operation.

9

SELECT map() FROM crawl_table GROUP BY reduce();

MapReduce Frameworks:
→ Internal implementation at Google (2003).
→ Yahoo! created the open-source version Hadoop (2005).
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MAPREDUCE SYSTEMS

People remembered that procedural query
languages are (usually) a bad idea.

MR vendors put SQL engines on top of Hadoop.

Hadoop technology/services market crashed.

Google announced they were dropping MR in 2014.

Discussion:
→ Companies kept HDFS but replaced Hadoop compute layer 

with relational query engines.
→ Aspects of MR frameworks carried into distributed DBMSs 

(disaggregated compute/storage, shuffle phase).
→ Rise of Hadoop alternatives (that eventually added SQL).
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DOCUMENT DATABASES

Represent a database as a collection of document objects 
that contain a hierarchy of field/value pairs.
→ Each document field is identified by a name.
→ A field's value is either a scalar type, array of values, or another 

document.
→ Applications do not predefine schema.

11

{<field>: <scalar|[values]|{document}>}

NoSQL Document-oriented Systems:
→ Non-standard / procedural query languages
→ Defined by what they lack instead of what they provide.
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DOCUMENT DATABASES

Document model is the same as  previous models
with many of the same problems.
→ Object-Oriented (1980s)
→ Semi-Structured / XML (1990s).

Core idea is denormalization ("pre-joining"):
→ Avoid object-relational impedance mismatch between 

application code and DBMS data model.
→ Avoid need for joins / multiple queries to retrieve data

related to an object (N+1 SELECT Problem).

12
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DOCUMENT DATABASES

Almost every major NoSQL DBMS relearned
(most) of the lessons from the 1970s:
→ SQL APIs are a good idea.
→ Schemas + integrity constraints are a good idea.
→ Transactions are a good idea.
→ Logical/physical data independence is a good idea.
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DOCUMENT DATABASES

Almost every major NoSQL DBMS relearned
(most) of the lessons from the 1970s:
→ SQL APIs are a good idea.
→ Schemas + integrity constraints are a good idea.
→ Transactions are a good idea.
→ Logical/physical data independence is a good idea.

Discussion:
→ SQL:2016 introduced JSON types + operators.
→ The intellectual distance between relational+JSON DBMSs and 

document+SQL DBMSs has shrunk.
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→ PartiQL

→ CQL

→ AQL

→ SQL++
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COLUMN-FAMILY / WIDE-COLUMN

Reduction of the document data model that only 
supports one level of nesting.
→ A record's value can only be a scalar or an array of scalars.
→ Deficiencies are the same as the document model.

14

{<field>: <scalar|[values]>}

Column-Family Systems:
→ First implementation was Google's BigTable (2004)
→ Copied by several Internet start-ups.
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GRAPH DATABASES

Direct multigraph structure that supports key/value 
labels for nodes and edges.
→ Property Graph vs. Resource Description Framework (RDF)

15

Property Graph DBMSs:
→ Provide graph-oriented traversal APIs.
→ Inefficient schemaless storage.

Node (id, {key: value}*)
Edge (node_id1, node_id2, {key: value}*)

https://db.cs.cmu.edu/


GRAPH DATABASES

Graph model is the same as the network model from 
CODASYL (1970s) with same issues.

Advancements in algorithms and systems will diminish 
the perceived advantage of specialized graph DBMSs.
→ Worst-case Optimal Joins
→ Vectorized Query Execution
→ Factorized Query Processing

Discussion:
→ SQL:2023 introduced SQL/PGQ (based on Neo4j's Cypher)

Subset of the emerging GQL standard.
→ Studies show that RM DBMSs outperform graph DBMSs.

16

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023/schedule.html#mar-15-2023
https://en.wikipedia.org/wiki/GQL


GRAPH DATABASES

Graph model is the same as the network model from 
CODASYL (1970s) with same issues.

Advancements in algorithms and systems will diminish 
the perceived advantage of specialized graph DBMSs.
→ Worst-case Optimal Joins
→ Vectorized Query Execution
→ Factorized Query Processing

Discussion:
→ SQL:2023 introduced SQL/PGQ (based on Neo4j's Cypher)

Subset of the emerging GQL standard.
→ Studies show that RM DBMSs outperform graph DBMSs.

16

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023/schedule.html#mar-15-2023
https://en.wikipedia.org/wiki/GQL
https://www.microsoft.com/en-us/research/project/project-akupara-approximate-nearest-neighbor-search-for-large-scale-semantic-search/


GRAPH DATABASES

Graph model is the same as the network model from 
CODASYL (1970s) with same issues.

Advancements in algorithms and systems will diminish 
the perceived advantage of specialized graph DBMSs.
→ Worst-case Optimal Joins
→ Vectorized Query Execution
→ Factorized Query Processing

Discussion:
→ SQL:2023 introduced SQL/PGQ (based on Neo4j's Cypher)

Subset of the emerging GQL standard.
→ Studies show that RM DBMSs outperform graph DBMSs.

16

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023/schedule.html#mar-15-2023
https://en.wikipedia.org/wiki/GQL
https://www.microsoft.com/en-us/research/project/project-akupara-approximate-nearest-neighbor-search-for-large-scale-semantic-search/
https://news.ycombinator.com/item?id=29737326


TEXT SEARCH ENGINES

Systems that extract structure (e.g., meta-data, indexes) 
from text data and support queries over that content.
→ Tokenize documents into "bag of words" and then build 

inverted indexes over those tokens.
→ No data model because text data is inherently unstructured.

Core ideas pioneered by Cornell's SMART (1965).
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Text Search Engines:
→ Quickly parse, index, and store large documents.
→ Built-in support for noise/salient words + synonyms. 
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TEXT SEARCH ENGINES

Leading RM DBMSs include full-text search indexes 
but their adoption is stymied by non-model reasons.
→ Non-standard SQL operations / syntax.
→ Text data is large but not high importance. DBMS storage is 

always more expensive than generic storage.

Discussion:
→ Maintaining a separate text search DBMS should be 

unnecessary but lots of people still do it.
→ All DBMS vendors are augmenting inverted-index text search 

with vector-based similarity search…
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ARRAY DATABASES

Collection of data where each element is identifiable by 
one or more dimension offsets.
→ Vectors (1D), Matrices (2D), Tensors (+3D)
→ Dimensions do not have to align with integer grids.

19

(dimension1, dimension2,... [values])

Array DBMSs:
→ Specialized storage managers and execution engines. 
→ Sparse vs. Dense Arrays 

https://db.cs.cmu.edu/
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ARRAY DATABASES

Supporting arrays as first-class data types violates the 
original RM vision. But this is a good example of RM 
evolving to meet the needs of applications.

Discussion:
→ SQL:2023 added multi-dimensional arrays (SQL/MDA).
→ Array data access patterns do not follow row-oriented or 

columnar patterns. Likely requires new execution engine.

21
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VECTOR DATABASES

Document DBMSs with specialized indexes for 
(approximate) similarity search on 1D arrays.
→ Vectors represent embedding of corresponding object.

22

{vector: [values],
 metadata: {key: value}*}

Vector DBMSs:
→ Accelerate approximate nearest neighbor search via indexes.
→ Not meant to be primary / database-of-record storage.
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VECTOR DATABASES

23

id name year lyrics

Id1 Enter the Wu-Tang 1993 <text>

Id2 Run the Jewels 2 2015 <text>

Id3 Liquid Swords 1995 <text>

Id4 We Got It from Here 2016 <text>

Embeddings
Id1 → [0.32, 0.78, 0.30, ...]

Id2 → [0.99, 0.19, 0.81, ...]

Id3 → [0.01, 0.18, 0.85, ...]

Id4 → [0.19, 0.82, 0.24, ...]

⋮

Vector
Index

HNSW, IVFFlat
Meta Faiss, Spotify Annoy,

Microsoft DiskANN

Transformer
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VECTOR DATABASES

The vector model is not a substantial deviation from 
existing models that requires new DBMS architectures.

Vector DBMSs offer better integration with AI tooling 
ecosystem (e.g., OpenAI, LangChain).

Discussion:
→ Every major DBMS will provide native vector index support in 

the near future.
→ The time from "ChatGPT Buzz" (Q4'22) to existing DBMSs 

announcing support for vectors (Q3'23) is telling.

24
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New Startups!
Lots of $$$!
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RELATIONAL IS NOT PERFECT

Many non-relational DBMSs provide a better "out-of-
the-box" experience than relational DBMSs.
→ Pandas / Jupyter notebooks are still more popular.

Relational DBMS developers should strive to make 
their systems easier to use and adaptive.
→ Cloud DBaaS hide much of the provisioning / configuration for 

high availably and durability.

AI/ML helps tuning + optimization.

43
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PARTING THOUGHTS

People will continue to make the same mistakes in 
future DBMS projects.

The demarcation lines of DBMS categories will 
continue to blur over time as specialized systems 
expand the scope of their domains.

The relational model and declarative query languages 
promote better data engineering.

44
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Email: pavlo@cs.cmu.edu

Twitter: @andy_pavlo

Mastodon: @andy_pavlo@discuss.systems

LinkedIn: linkedin.com/in/andy-pavlo
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